(1.四川师范大学 体育学院,四川 成都 610101;2.鲁东大学 体育学院,山东 烟台 264025;3.四川省医学科学院 四川省人民医院,四川 成都 610031) 摘 要:miRNA调控机体对训练应激的适应能力,其调控模式影响有氧耐力可训练性。循环miRNA(c-miRNA)与miRNA密切相关,分析不同有氧耐力可训练性水平群体的运动适应性c-miRNA表达变化差异,可获得与训练敏感性相关的c-miRNA表达谱特征。结果显示:高可训练性表型在有氧训练应激诱导下差异表达17条c-miRNA,其中11条上调,6条下调或平稳,其调控功能主要涉及低氧适应通路和脂肪酸β氧化代谢的关键基因表达。提示:有氧耐力可训练性差异与机体低氧适应能力和脂肪酸β氧化供能能力,对有氧训练应激诱导作用的反应性密切相关。miRNA调控并整合机体应激适应性基因表达。c-miRNA差异表达谱可用来评估有氧耐力可训练性,预测有氧能力发展潜力。 |
XUE Yuan1,LI Yan2,XU Si3
(1.School of Physical Education,Sichuan Normal University,Chengdu 610101,China;2.School of Physical Education,Ludong University,Yantai 264025,China;3.Sichuan Academy of Medical Science,Sichuan Provincial Hospital,Chengdu 610031,China) Abstract: miRNA regulates the body’s ability to adapt to training stress; its regulating pattern affects aerobic en-durance trainability. Circulating miRNA (c-miRNA) is closely related to miRNA; by analyzing differences in the changing of sport adaptive c-miRNA expression of groups of people at different aerobic endurance trainability lev-els, the authors can acquire the expression spectrum characteristics of c-miRNA sensitively correlative with training. Results: induced by aerobic training stress, the phenotype with high trainability differentially expressed 17 c-miRNAs, 11 of which were up-regulated, 16 of which were down-regulated or steady, its regulating function mainly involved with hypoxia adaptation pathway and the key gene expression of fatty acid β-oxidation metabolism. Hint: aerobic endurance trainability difference is close related to the reactivity of the body’s hypoxia adaptation ability and fatty acid β-oxidation energy supply ability to the induction function of aerobic training. miRNA regulates and in-tegrates the body’s stress adaptive gene expression. C-miRNA differential expression spectrum can be used to evaluate aerobic endurance trainability, and to predict aerobic ability development potential. |
下载本期全文:点击下载